REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS

The numbers in brackets are assigned according to the indexing system printed in Volume 22, Number 101, January 1968, page 212.

42 [2.10].-W. Robert Boland, Coefficients for Product-Type Quadrature Formulas, Department of Mathematics, Clemson University, Clemson, South Carolina. Ms. of 16 pp . (undated) deposited in the UMT file.

Product-type quadrature formulas have been introduced by the author [1] in collaboration with C. S. Duris for the numerical approximation of definite integrals of the form $\int_{a}^{b} f(x) g(x) d x$. Such a formula is said to be "product-interpolatory" if it is derived by integrating $p_{n}(x) \cdot q_{m}(x)$, where $p_{n}(x)$ is the polynomial interpolating $f(x)$ at the nodes $x_{i}, i=0(1) n$, and $q_{m}(x)$ similarly is the polynomial interpolating $g(x)$ at the nodes $y_{i}, j=0(1) m$. In this case the author proves in [1] that the coefficients in the corresponding quadrature formula

$$
\int_{a}^{b} f(x) g(x) d x \approx \sum_{i=0}^{n} \sum_{i=0}^{m} a_{i j} f\left(x_{i}\right) g\left(y_{\imath}\right)
$$

are given by $a_{i j}=\int_{a}^{b} l_{i}(x) L_{i}(x) d x$, where $l_{i}(x)$ and $L_{i}(x)$ are, respectively, the i th and j th Lagrange interpolation coefficients for the nodes x_{i} and y_{i}.

In the present tables the range of integration is taken to be $(-1,1)$, and the parameters n and m are restricted to the ranges $n=1(1) 5$ and $m=1(1) 5$.

Table 1 consists of the exact (rational) values of the coefficients for the corresponding product Newton-Cotes formulas; Table 2 consists of 16 S values (in floatingpoint form) of the coefficients for the corresponding product Gauss formulas; and Table 3 gives 16 S values of the coefficients for the corresponding product Gauss-Newton-Cotes formulas.

The tabular values were calculated on an IBM 360/75 system, using doubleprecision arithmetic, and the author believes they are correct to at least 15 S . As partial confirmation, a spot check by this reviewer revealed no errors exceeding 5 units in the least significant digit. However, in Table 1 a serious printing error was discovered; namely, the least common denominator of the coefficients corresponding to $n=m=3$ should read 840 instead of 1 .

For an appropriate error analysis of such quadrature formulas, the user of these tables should consult [1], where he will also find some comments on their applicability, in particular to the study of the Fredholm integral equation of the second kind.

[^0]
[^0]: J. W. W.

 1. W. R. Boland \& C. S. Duris, "Product type quadrature formulas," Nordisk Tidskr. Informationsbehandling (BIT), v. 11, 1971, pp. 139-158.

 43[2.10].-Paul F. Byrd \& David C. Galant, Gauss Quadrature Rules Involving
 Some Nonclassical Weight Functions, NASA Technical Note D-5785, Ames

